Big Data and Machine Learning

Prof. Dr. Thomas Seidl

LMU Munich, Chair of Database Systems and Data Mining

Nov. 22nd, 2018 | LRZ Symposium SuperMUC-NG | Garching

Big Data Everywhere – Many V's from Gartner 2011, IBM, BITKOM, Fraunhofer IAIS, etc.

Volume

Zettabytes Exabytes Petabytes Terabytes

Variety

Video, photos, audio, texts, blogs, tables, locations Structured-semistructured-unstructured

Velocity

Batch Periodic Real-time Anytime

Veracity / Validity

reliability, noise, trust, provenance

Value / Visual Analytics

patterns, rules, trends, outliers data science

Data Science Ingredients

Maths and Computer Machine Science Learning **Statistics** Data Science **Domain** Knowledge

Machine Learning – Tasks

Descriptive Learning

Better understanding

Pattern recognition Clustering Outlier detection

Data Mining

Predictive Learning

Better forecasts

Traffic prediction Labeling Fraud detection

Regression

Prescriptive Learning

Better actions

Predictive maintenance Autonomous driving Medical therapies

Artificial Intelligence

LMU Data Science Ecosystem

Basic and Continuing Education

- BSc and MSc programs in Statistics and Informatics (19xx)
- MSc Data Science by Elite Network Bavaria (2016)
- Certified advanced training course (2018), Munich R courses (2015)

Student Labs with Industrial Partners

- LMU Data Science Lab (2014)
- ZD.B Innovation Lab "Big Data Science" (2017)
- Statistical Consulting Lab (StaBLab, 1997)

Competence Center and Doctoral Training

- MCML Munich Center for Machine Learning (BMBF), LMU & TUM
- MuDS Munich School for Data Science @Helmholtz, TUM & LMU

Solutions for Application Domains

- LRZ Competence Center on Big Data (2018, StMWK)
- Fraunhofer ADA-Center: IIS, FAU, LMU (2018, StMWi)

Master Data Science

www.datascience-munich.de

- Funded by Elite Network of Bavaria
- Operated by Statistics and Informatics at LMU + TUM + U Augsburg + U Mannheim
- Traditional and practical courses
 - Focused Tutorials, Summer School, Data Fest, Data Science meets Data Practice
- International scope
 - Fully English spoken, small cohorts
 - Entrance profile: excellent grades for
 - > 30 ECTS in Statistics
 - ≥ 30 ECTS in Computer Science
- Spokespersons
 - Prof. Göran Kauermann (LMU Statistics)
 - Prof. Thomas Seidl (LMU Informatics)
 - Dr. Constanze Schmaling (coordinator)

Data Science Lab @LMU: Working Space for Collaborations

Data Science Lab @LMU

Cutting Edge Research
Industry Projects
Education

Visibility

Data Science Students

Partners

SIEMENS

AKTIENGESELLSCHAFT

Munich Center for Machine Learning (MCML)

- Funded by BMBF (2018 2022 2025)
 - Berlin, Dortmund/St. Augustin, München, Tübingen
- Joint Initiative of Informatics and Statistics
 - 15 principal investigators from LMU and TUM
 - Directed by Thomas Seidl, Bernd Bischl, Daniel Cremers
- Four leading application areas
 - Mobility, Life Sciences, Healthcare, Industry
- Five research areas
 - Spatio-temporal ML, Graphs & Networks, Representation Learning, Validation & Explanation, Large Scale ML

Helmholtz Data Science Initiative

Munich School for Data Science @ Helmholtz, TUM & LMU

LRZ Big Data Competence Center

Customized Concepts

Consulting

User Support

Innovative Technologies

Hardware Resources Big Data Infrastructure

Open Data

Continuing Education

Training

Fraunhofer ADA Center

Some of Our Research Areas

Representation Learning

Explainable Al

Process Mining

Deep Learning

Knowledge Graphs

Similarity Search for Fuel Injection (SFB 686)

Spray vortex analysis in combustion engineering: compare experiments with simulations

Virtual Sensors for Fuel Injection (SFB 686)

Beecks, Zimmer, Seidl, Martin, Pischke, Kneer: SISAP 2011

Beecks, Zimmer, Kirchhoff Seidl: ICCV 2011

Similarity Modeling

Classic methods

- Feature engineering: bag of words, term frequency, feature signatures, ...
- Similarity functions, distance functions

Neural learning

- Representation learning, metric learning
- Learn analogies of similar objects, e.g. by Siamese networks [AT&T 1993] [LMU 2015]

[Bromley, Guyon, Le Cun, Sackinger, Shah: NIPS 1993]

[Yin, Schütze, Xiang, Zhou: arXiv 2015]

Similarity Learning Through Embedding

Similarity Learning Through Embedding

Similarity Learning – Are There Labels Available?

Focus on given concepts

Supervised learning

Many

Focus on few hidden concepts

some few

Semisupervised learning

Many hidden concepts

Unsupervised learning

None

Clustering

- Customer Segmentation, Labeling Products, Clique Detection, ...
 - Clustering for heterogeneous objects
 - Subspace clustering, density estimation for higher subspaces
 - Non-linear Correlation Clustering
 - Semi-supervised clustering, constraints models
 - ..

Alternative Clustering, Multi-view Labeling

Labeling of Co-speach Gestures

- Gestures are a non-verbal modality of human expression
- Supervised: Recognition of known gestures from dictionary
- Unsupervised: Extraction of frequent patterns to hypothesize gestures

[Schüller, Beecks, Hassani, Hinnell, Brenger, Seidl, Mittelberg: **Göttingen Dialog in Digital Humanities** 2015] – *best paper award* [Beecks, Hassani, Hinnell, Schüller, Brenger, Mittelberg, Seidl: **SSTD** 2015]

Process Mining

time	case	event
2018-6-6-6:29	732	a
2018-6-6-6:32	744	
		a
2018-6-6-6:33	732	b
2018-6-6-6:34	728	a
2018-6-6-6:35	732	d
2018-6-6-6:37	744	b
2018-6-6-6:38	728	С
2018-6-6-6:39	751	а
2018-6-6-6:42	744	d
2018-6-6-6:43	732	d
2018-6-6-6:44	744	е
2018-6-6-6:45	751	С
2018-6-6-6:47	732	е
2018-6-6-6:48	744	g
2018-6-6-6:59	751	d
2018-6-6-7:02	751	е
2018-6-6-7:03	728	е
2018-6-6-7:04	768	а
2018-6-6-7:05	751	h
2018-6-6-7:07	768	С
2018-6-6-7:08	728	h
2018-6-6-7:09	732	g
2018-6-6-7:12	768	d
2018-6-6-7:13	779	а
2018-6-6-7:14	768	е
2018-6-6-7:15	779	b
2018-6-6-7:17	768	h
2018-6-6-7:18	779	d

	#	trace	
•	455	acdeh	
	191	abdeg	
	177	adceh	
	144	abdeh	
	111	acdeg	
	82	adceg	
	56	adbeh	
	47	acdefdbeh	
	38	adbeg	
	33	acdefbdeh	
	14	acdefbdeg	
	11	acdefdbeg	
	9	adcefcdeh	
5 3		adcefdbeh	
		adcefbdeg	
		acdefbdefdbeg	
		adcefdbeg	
	2	adcefbdefbdeg	
1 1		adcefdbefbdeh	
		adbefbdefdbeg	
	1	adcefdbefcdefdbeg	
1	1391		

- Task: Extract process model from log entries which
 - ... is able to replay the log
 - ... simplifies as far as possible
 - ... does not overfit the log
 - ... does not underfit the log

- \Rightarrow *Fitness*
- $\Rightarrow Simplicity$
- \Rightarrow Generalization
- \Rightarrow Precision

Process Discovery: Tune Generalization Granularity

Process Mining: Towards Holistic Analytics in Industry 4.0 Environments

Applications

- Fleet management
- Monitoring of train schedules
- Predictive maintenance for mechanical parts in use
- Monitoring of production processes

Challenges for Process Mining on Complex Events and Cases

- Multi-source data descriptions
- Multimodal and heterogeneous data
- Spatio-temporal contexts
- Uncertainty in object representations
- Evolution of models over time

Stream Process Mining

Event Stream

Batched Approach

Prefix-Trees

Irregular Updates

Decaying

[Hassani, Siccha, Richter, Seidl: IEEE CI 2015]

Big Data Technology for Machine Learning

- Distributed Processing on Hadoop Distributed File System HDFS
 - Hadoop MapReduce
 - Apache Spark
 - Apache Flink
- Graph and Network Analysis
 - Pregel, Giraph, GraphX, Gelly
- GPU cluster computing
- New interaction models, explainable Al
 - interactive data mining, incremental algorithms
 - Visual Analytics

[Fries, Wels, Seidl: EDBT 2014] – [Fries, Boden, Stepien, Seidl: ICDE 2014] – [Seidl, Fries, Boden: BTW 2013] – [Seidl, Boden, Fries: ECML/PKDD 2012]

https://www.lrz.de/presse/fotos/

Similarity Self-Join DB ⋈₅DB Core point detection $|N_{\varepsilon}(p)| \ge \mu$

Connected components $\{C_1, C_2, ..., C_m\}$

How About Your Data?

